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Abstract-An approach based upon Bayes Theorem has been developed to resolve two major difficulties 
encountered in earlier experimental investigations concerned with the estimation of parameters for heat 
transfer in fixed beds. The first difficulty is in obtaining estimates of the Nusselt and Peclet groups with 
appropriate confidence intervals, and the second is the considerable variation found in the Peclet and 
Nusselt groups in the range of intermediate Reynolds number. In a new experimental investigation it has 
been found that estimates of the Peclet and Nusselt groups could be changed in a correlated way without 
changing the variance of experimental error about the theoretical values, an interaction that precluded the 
accurate estimation of either parameter. The Bayesian approach identified a confidence region linking the 
Nusselt and Peclet groups from earlier work, and a confidence region for the two parameters obtained in 
the new investigation ; the best estimates were obtained where the two confidence regions overlapped. In 
the final presentation the parameter values and independent estimates of parameter accuracy were found 
to be consistent with correlations established on the basis of earlier work, but with greatly improved 

confidence regions for the Nusselt and Peclet groups expressed as functions of Reynolds number. 

INTRODUCTION 

THE PREDICTION of heat transfer in packed beds of 
gas-solid systems is a topic of continuing interest to 
chemical engineers, as it is an important factor for the 
modelling and operation of fixed bed processes. Many 
experiments have been carried out for the purpose 
of estimating the parameters in a model of known 
mathematical form (Littman et al. [l], Littman and 
Sliva [2], Gunn and de Souza [3], Gunn [4] and Dixon 
and Cresswell [5]). Several models have been pro- 
posed for the description of the phenomena of heat 
transfer in packed beds under steady and unsteady 
state conditions. They may be categorised as single 
and two phase models. It is important to select the 
appropriate model to ensure the reliability of the heat 
transfer parameters obtained and to carry out statis- 
tical tests on the model to test for its validity. Accord- 
ing to Gunn [6] there are three principal criteria that 
should be met in a satisfactory model ; they are as 
follows : 

1. The first is that the form of the experimental 
response should be satisfactorily represented by the 
theoretical response according to statistical tests 
designed to examine the validity of models such as the 
variance ratio test (i.e. F test) and the Chi* test. 

2. The second criterion is that the parameters of 
the model found from a set of different experiments 
should be physically consistent from one experiment 
to another. 

3. The third criterion is that the parameters of 
the model should depend upon the physical properties 
of the fluid and solid in a manner that is consistent 
with the established laws of fluid mechanics and heat 
transfer. 

A major criticism of much of the experimental work 
on heat transfer is that only rarely have statistical 
techniques of model validation been employed 
(Narayanan [7l and Sabri [S]). There are a small num- 
ber of experimental reports on heat transfer and of this 
small number most authors have reported transport 
parameters for a preferred model without subjecting 
their experiments to error analysis to examine the 
distribution of residual errors. 

In one-phase models the bed is approximated by a 
homogeneous medium (Damkohler [9], Yagi et al. 
[lo], and Vortmeyer and Schaefer [I 11). In two-phase 
models both phases exchange heat and interphase 
transport processes are accounted for separately 
(Schumann [12], Littman et al. [1], Littman and Sliva 
[2], and Gunn and de Souza [3]). 

Although single phase models are relatively simple 
in form they cannot include heat transfer between 
particle and fluid (Yagi et aI. [IO]). The solid and the 
fluid temperatures are assumed to be the same even 
though there are differences between the temperatures 
when a reaction of significant thermicity takes place 
in the porous interior or at the surface of the particles. 
Although homogeneous models reduce the com- 
plexity of the computations, the transport and reac- 
tion parameters within the models effectively lump 
contributions from intraparticle and fluid particle 
processes into the parameter values. Thus, in effect, 
transport and kinetic coefficients in single-phase 
models are empirical, and can only be related to more 
fundamental properties by reference to other more 
realistic models. 

Two-phase models are thus more realistic and more 
satisfactory in representing two-phase behaviour. 
Three basic types may be defined according to whether 
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NOMENCLATURE 

I 
specific heat of fluid [J kg-’ K-‘1 V superficial velocity [m s-‘1 

dP 
specific heat of solid [J kg-’ K-‘1 Z bed axial coordinate [ml. 
diameter of particle [m] 

DL axial thermal dispersion [wm-’ K-‘1 Greek symbols 

x 
porosity A thermal conductivity of fluid 
heat transfer coefficient [w me2 K- ‘1 [wm-’ K-‘1 

2 
heat capacity of fluid [J me3 K-‘1 P viscosity of fluid [kg m-’ s-‘1 
heat capacity of solid [JmW3 K-l] P density of fluid [kg m-‘I. 

9c rate of heat transfer/unit volume of solid 
W mm’1 Dimensionless groups 

r particle radial coordinate [m] N Nusselt group, hd/l 
R radius of particle [m] Pe Peclet group, V&d/DL 
T temperature of fluid [K] Per defined following equation (11) 

TP temperature of particle [K] Pr Prandtl group, @/(;lp) 
I time [s] Re Reynolds group, dVp/p. 

. axial dispersion is related to temperature gradients in 
the solid phase, fluid phase or both phases. Littman 
et al. [1] included dispersion terms in both the solid 
and the fluid-phase equations. There is a problem 
in separating the two dispersion terms as they are 
interconnected. In this model known as the con- 
tinuous-solid phase model (Wakao and Kaguei [13]) 
the particle phase is regarded as continuous. However, 
this model may not depict satisfactorily the phenom- 
ena of heat transfer in packed beds because intra- 
particle temperature and concentration distributions 
have not been included. The model is not suitable for 
beds with particles of significant size if intraparticle 
concentration or temperature gradients are significant 
although it can be useful if intraparticle gradients 
are not important (Vortmeyer and Beminger [14]). 
Littrnan and Sliva [2] proposed a two-phase model 
which only included dispersion in the solid phase and 
is thus suitable for low flow rates where intraparticle 
effects are not significant. 

The fluid-phase dispersion model has been widely 
used for the analysis of unsteady state heat transfer 
in packed beds (Gunn and de Souza [3]). In this 
model, the total dispersion is attributed to the fluid- 
phase and the temperature distribution within the 
solid phase is considered. This model provides a satis- 
factory description of the heat transfer process in 
packed beds that contain particles of considerable size 
that cannot be considered isothermal. Intraparticle 
effects have not been accounted for in two-phase 
models except the fluid-phase dispersion model. Gunn 
[6] has also shown that the fluid-phase dispersion 
model satisfies the three principal criteria for a satis- 
factory model. 

Several workers have employed dynamic analysis 
for parameter estimation (Littman et al. [l], Goss and 
Turner [15], Turner and Otten [16], Gurm and de 
Souza [3] and Narayanan [q). Of the usual techniques 
for dynamic response, analysis of a step change, of a 

pulse change, and of a periodic change are exper- 
imentally convenient, and of these, pulse response 
analysis, although not as sensitive as frequency 
response is convenient and accurate when analysed by 
sensitive and responsive instrumentation. 

Most of the experimental investigations into 
dynamic response have been carried out on packed 
beds of spheres with estimation procedures concerned 
with final point estimates of the heat transfer para- 
meters. The parameter estimation procedures which 
have been followed for functions which are linear in 
the parameters, were usually aimed at achieving a 
point estimate by applying a least squares optimisa- 
tion method. Sensitivity analyses were then carried 
out at the optimum to calculate the variance-covari- 
ante matrix, from which the accuracy of the estimate 
can be evaluated (Davies and Goldsmith [lq). This 
procedure is strictly justified only when the model 
equations are linear in the parameters. For non-linear 
systems Draper and Smith [18] pointed out the 
importance of good starting values to enable an itera- 
tive technique to converge to the optimal condition. 
Thus, if there are several local minima besides the 
global minimum, poor starting values may result in 
convergence to a point possessing a high variance. 
They pointed out that available knowledge should be 
utilised in order to achieve good starting values and 
suggested carrying out a grid search in order to select 
starting points which would allow the solution to con- 
verge. 

The question of determining a confidence interval 
for the final estimate is important. The suitability of 
the experiments for optimising the parameters has 
sometimes not been taken into consideration. It 
should be emphasised that unless point estimates are 
accompanied by an estimate of their accuracy they 
are of little use. Sabri [8] applied the linearisation 
procedure to a steady state heat transfer model in 
estimating the axial and radial dispersion coefficients 
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and wall heat transfer coefficient. The principal 
elements of the variance-covariance matrix gave the 
standard errors for the parameters, and a wide varia- 
tion in standard errors for the same parameters was 
found in different experiments. 

From previous work which was carried out we may 
conclude that : 

1. It is important to select the appropriate model 
to ensure the reliability of the heat transfer parameters 
obtained and to carry out statistical tests on the model 
to test for its validity. 

2. Intraparticle effects should be included as they 
can play an important role in the heat transfer process. 

3. Estimation procedures of earlier workers have 
been mainly concerned with obtaining final point esti- 
mates of the heat transfer parameters. None of the 
work related the final estimates to prior information 
as suggested by Bayes’ Theorem, a possible way of 
providing more comprehensive parameter estimates 
by using other information. 

There are two difficulties which are encountered 
in parameter estimation problems. The first is the 
sensitivity of the experiment to the parameters. Gunn 
et af. [19] measured radial temperature distributions 
when air passed through a fixed bed heated at the 
wall. The inclusion of the axial dispersion coefficient 
in the model provided good agreement between the 
theoretical and experimental temperature profiles 
when radial transport parameters were obtained, even 
though tests showed that the sensitivity of the model 
to the axial dispersion term was low. Transient exper- 
iments without radial gradients gave a much better 
estimate of the axial dispersion term (Gunn and de 
Souza [3] and Dhingra et al. [20]). 

The second difficulty is interaction between para- 
meters. In dynamic response experiments axial dis- 
persion of heat dominates at low Reynolds numbers 

(Gunn and de Souza [3], and Narayanan [q/1) and thus 
the experiment is insensitive to the particle fluid heat 
transfer coefficient. As the Reynolds number increases 
both axial dispersion and particle fluid transfer affect 
the heat transfer processes. The interaction between 
these two parameters appeared in the form of a scatter 
when the values of the estimated Peclet and Nusselt 
groups were plotted against Reynolds number in the 
range from 1.0 to 300.0 (Gunn and de Souza [3], and 
Narayanan [I). 

A Bayesian analysis of the dynamic response of a 
fixed bed of particles to a pulse of heat has been 
attempted in the estimation of particle thermal con- 
ductivity and heat capacity (Gunn and Misbah [21]). 
Figure 1 shows the dependence of the sum of squares 
of the experimental temperature deviations from the 
actual values upon Nusselt and Peclet groups based’ 
upon values of the particle thermal capacity and con- 
ductivity estimated from the Bayesian Analysis. The 
banana-shaped contours show cusps and sharp com- 
plexities. The function possesses a complex rough sur- 
face topology with multiple local minima. The depend- 
ence of the sum of squares upon the parameter values 
shown in Fig. 1 may be described as a fairly shallow 
region in which several minima he, surrounded by 
regions in which the sum of squares increases sharply. 
Model validation tests such as the F ratio test indicate 
that if the model is valid at the minimum then the 
entire shallow region is a region of model validity in 
that the test gives a high probability that the model is 
valid without significant variation in the entire region. 
A variation of the order of 10% in the sum of squares 
does not affect the validity of the model, and we refer 
to this region as the ‘indifference region’. 

Therefore in view of the complexity of the topology 
of the surface a parameter estimation procedure that 
terminates in the indifference region is satisfactory. 
There is no significant statistical basis for dis- 
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FIG. 1. Contours of the S.S. x lo-’ for glass spheres at Re = 263. 
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criminating amongst the different minima in this 
region. 

The purpose of this paper is to extend the Bayesian 
method to provide estimates of parameter accuracy 
for the Nusselt and Peclet groups characterising fixed 
bed transport processes, and in particular to resolve 
a major and difficult interaction between these two 
parameters. The resolution of this interaction is found 
to comprise transport relationships established pre- 
viously, as well as the present experiments, and to 
explain the wide variation of these two parameters in 
the range of intermediate Reynolds numbers found in 
earlier work. 

DESCRIPTION OF EXPERIMENTAL 

EQUIPMENT 

Dynamic methods have been frequently used in 
experimental investigations into heat transfer charac- 
teristics of packed beds mainly because a wider range 
of transport modes are stimulated in an experiment, 
and response to a wide range of impressed functions 
can be measured. Of the usual techniques for dynamic 
response, analysis to a step change, a pulse change 
and a periodic change are often used. 

In this study a series of experiments into the dynam- 
ics of pulse response of beds of spherical particles 
was examined. A flow diagram for the experimental 
equipment is shown on Fig. 2. The experimental set- 
up consisted of the flow control systems, the tracer 
input system and the tracer detection system. The flow 
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FIG. 2. Block diagram of experimental set-up. 

system comprised the air supply, the experimental 
column and inlet section, and the packing materials 
which were glass ballotini spheres. Two sizes of 
spheres were examined in the experiments: 0.5 and 
6.0 mm in diameter. The tracer input system com- 
prised the pulse generator and a grid heater, while the 
tracer detection system consisted of the temperature 
sensors, the resistance bridges and a recorder. Air 
flowing through the packed bed was metered by one 
of the rotameters which had a total capacity in the 
range l-370 1 min-‘. The air from the flow meters was 
first passed through an inlet section, which housed 
three inlet sensors to be described later. The inlet 
section was made of tufnol and was packed with 2 
mm glass spheres to act as a distributor. Experimental 
columns were made of perspex of internal diameter 
89 mm and lengths of 50 and 80 mm. The columns 
were held between tufnol flanges by means of tie rods. 
The pulse heat input was generated by a thyristor 
circuit and a grid heater. The grid heater consisted of 
200 strands of 0.025 mm diameter tungsten wire, each 
5 cm long, attached to two conducting supports, one 
of which was connected to a taut spring to allow for 
expansion of wires on heating. The voltage supplied 
to the heater was constant and was controlled by a 
timing circuit. 

The tracer detection system consisted of four tem- 
perature sensing elements, two resistance bridge net- 
works and a recorder. Three of the sensors were placed 
in the inlet section so that the entire exit gas flow from 
the rotameters passed over them. The inlet sensors 
were mounted on rectangular tufnol frames and 
housed in the inlet section. Two of the inlet sensors 
were placed in a resistive bridge which was connected 
to a recorder and gave an output indication of the 
integrity of the instrument system. The third input 
sensor, carefully balanced with the outlet sensor was 
placed in a second bridge. The signal from the second 
bridge, due to the out of balance voltage generated by 
changes in gas temperature, was passed into an inbuilt 
amplifier in the two channel recorder (Tekman model 
800). All sensors were made of tungsten wire 0.025 
mm diameter and wound over rectangular tufnol 
frames 30 mm x 10 mm. The four sensors were wound 
to resistances of 36.8,36.7,37.6 and 37.4 R and placed 
in the resistance bridges that were balanced by highly 
stable standard resistances of 50 Q (3 ppm ‘C-l) when 
no heat was applied to the grid heater. 

The experimental scheme was set to obtain two sets 
of responses.for beds 50 mm and 80 mm in length. To 
determine an accurate temperature distribution from 
the experiment it was necessary to correct for the end 
effects of the bed, effects due to the inlet section and 
output detection. The correction was incorporated in 
the experimental results by using two lengths of bed, 
each chosen to give a response that could be measured 
accurately for different particle sixes and flow rates. 
When a steady base line was attained, a temperature 
pulse was imposed upon a steady gas flow metered to 
the experimental bed by passing a current through the 
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FIG. 3. Peclet groups reported in various studies. 

grid heater for a measured period of 30 s. The out 
of balance voltage generated by the increase in gas 
temperature was fed to a two channel recorder of 100 
/IV full scale maximum sensitivity. 

The response measured for the 50 mm bed, rep- 
resented the input pulse, and the response measured 
for the 80 mm bed represented the output pulse for a 
bed of length equal to the difference, i.e. 30 mm in 
length. 

THEORY 

TheJuid-phase dispersion model 
The fluid-phase dispersion model has been widely 

used for the analysis of unsteady state heat transfer 
in packed beds, Gunn and de Souza [3] and Dhingra 
et al. [20]. In this model, the total dispersive flow 
assumed proportional to the fluid-phase temperature 
gradient and the temperature distribution within the 
solid particle is considered. The partial differential 
equations describing this model are as follows : 

For the fluid phase 

d2T ar aT (1-e) 
&~-KrV~-Krjyqc e -=o (1) 

subject to the boundary conditions 

VT,= VT-:$ atZ=O (2) 
r 

and 

g=O atZ=L (3) 

For the solid phase, 

The fixed bed equation is linked to the particle equa- 
tion by the boundary condition 

1 g = h(T- T,) 
0 

at the surface of heat transfer 

(5) 

where n is the inward directed normal at the particle 
surface. 

The form of the differential equation allows any 
convenient temperature datum to be chosen. 

The partial differential equations were solved by 
applying a finite difference method, the Alternating 
Phase Implicit Method which was developed by Dhin- 
gra et al. [20]. These workers employed the basic idea 
of the AD1 method (Peaceman and Rachford [22]) 
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FIG. 4. Nusselt groups reported in various studies. 

for solving two equations, bed and particle in the fluid 
phase dispersion model. They developed a scheme 
to alternate an implicit-explicit formulation between 
two phases. For a fixed bed packed with spherical 
particles the alternation was between axial coor- 
dinates for the bed, and the coordinate of radial sym- 
metry for the spherical particles. This discretization 
technique is stable for all At but requires merely the 
solution of several tridiagonal equation sets for each 
time step movement. The method consists of repre- 
senting one of the second order space derivatives fully 
implicitly and others explicitly then solving to the new 
time level (I,+,). When the set of tridiagonal equa- 
tions has been solved, the tj level is deleted and then 
the tj+2 time level is calculated from the tj+ , values. 
The implicit-xplicit representation is then reversed 
for the following new time step (tj+3). The algorithm 
developed was as follows : 

1. Explicit bed equation 
2. Implicit particle equation 
3. Explicit particle equation 
4. Implicit bed equation. 

The alternation in coordinates to represent deriva- 
tives explicitly or implicitly is necessary in order to 
ensure stability of the computations. Central differ- 

ences were used to expand the space derivatives and 
a forward difference representation was used for the 
time derivatives. In the tridiagonal equation set, each 
equation has exactly three unknowns in a particular 
order except for the first and last equations which 
have exactly two unknowns. A direct elimination 
method that utilises the banded nature of the matrix 
is applied to obtain the solution. 

Bayes Theorem and its application 
In Bayes Theorem (Bard [23]), the posterior prob- 

ability density of a parameter 8, P*(O) is related to 
the prior probability density PO(e) by the likelihood 
function L 

p*(e) CC L(e)p,(e). (6) 

The likelihbod is a function of 0 and $ is the true 
parameter value. It may be described as follows : 

Y = F(x,e)+& (7) 

where Y is the vector of dependent variables, 0 are 
the parameters and X is the vector of independent 
variables. 

E(e) = Y - F(X, e) (8) 

where s(O) is the difference between the observed and 
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FIG. 5. Dependence of Peclet group on Reynolds number for a bed packed with glass ballotini without 
allowance for parameter interaction, this investigation. 

the computed value of the dependent variable. If 0 is 
close to the true value (P), then s(e) should be close 
to the true errors. The likelihood function is thus : 

-w $> = A y-m, W). (9) 

We simply seek to identify properties of the optimisa- 
tion search that will allow equation (6) to be realised 
with L(B) as the maximum likelihood estimator for 
pm. 

Maximum likelihood is attained by achieving a 
minimum least squares estimate, under conditions 
that may reasonably be expected to apply (Bard [23]). 

The procedure used for the estimation of para- 
meters was to define the sum of the squares of devia- 
tions between experimental and theoretical tem- 
peratures, and to use an optimisation routine to 
minimise the sums of squares by changing the para- 
meter values. Because of the form of the objective 
function illustrated in Fig. 1, it was found that when 
the optimisation routine due to Rosenbrock [24] was 
used when seeking four or more parameters, the final 
estimates were placed within ‘the indifference region’ 
for a range of initial values taken from an estimated 
prior distribution. When three or less parameters were 
sought it was found that the procedure was more 
sensitive to the minima illustrated in Fig. 1, and the 

preferred estimates were placed within a particular 
region in which a minimum was found even though 
other regions were associated with sums of squares 
that differed by no more than a few percent from the 
preferred region. 

If the initial estimates were taken from a range of 
values that corresponded to a fairly wide initial choice, 
the final estimates when four or more parameters were 
varied possessed the salient properties of Bayesian 
posterior densities (Gunn and Misbah [21]). This 
method was extended here to provide estimates for all 
four parameters, while including a resolution of a 
particularly difficult parameter interaction. 

EXPERIMENTAL RESULTS 

The experimental results in the form of the time 
variation of temperatures from beds of different 
lengths were fed as input data to a computer program 
which was developed to estimate the heat transfer 
parameters. Parameter estimates were obtained by 
calculating a variance of experimental measurements 
about predicted values for parameters by applying 
the criterion of least squares. The values of the axial 
dispersion coefficient, heat transfer coeflicient, ther- 
mal conductivity and heat capacity of solid associated 
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FIG. 6. Dependence of Nusselt group on Reynolds number for a bed packed with glass ballotini without 
allowance for parameter interaction, this investigation. 

with the least values of variance were the best values 
provided by that particular experiment. The variance 
calculated may be considered to have four 
components, one due to experimental error, the 
second due to the accuracy of the physical model, the 
third due to the minimisation routine applied, and the 
fourth due to the numerical error. It was shown that 
the variance could be mostly described by the exper- 
imental error, that the contribution of the mini- 
misation routine and numerical error could be 
neglected, and that the model gave a good description 
of the experimental results (Misbah [25]). 

When the optimisation procedure was carried out 
over the range of the prior density it became apparent 
that the posterior densities so obtained gave realistic 
estimates of the accuracy of the parameter estimates 
and the ratio of the standard deviation of the posterior 
to prior densities reflected the accuracy of that exper- 
iment for that parameter. 

THE AXIAL DISPERSION COEFFICIENT AND 

HEAT TRANSFER COEFFICIENT AND THE 

RESOLUTION OF THE PARAMETER 

INTERACTION 

The axial dispersion coefficients and heat transfer 
coefficients for the spherical particles were expressed 

Table 1. Posterior values of Nusselt-Peclet groups for spheri- 
cal particles from a four parameter search procedure 

Re 

2.7 

91 

240 

NU Pe S.S. x lo-’ 

1.148 0.3644 0.4235 
1.739 0.3134 0.4252 
2.289 0.2621 0.4416 
2.295 0.256 0.4482 
1.452 0.3332 0.4242 
2.355 0.2349 0.4556 
3.393 0.1968 0.494 
2.343 0.26 0.4925 

25.19 2.301 0.6754 
34.48 1.457 0.67476 
38.5 1.369 0.67592 
44.19 1.217 0.67926 
31.61 1.667 0.67376 
39.17 1.328 0.67659 
37.06 1.387 0.67559 
37.42 1.368 0.67584 
29.88 1.802 0.67378 

74.81 1.221 0.9261 
93.89 0.9605 0.9023 

114.9 -0.8804 0.8969 
129.7 0.8662 0.8937 
110.5 0.9134 0.8979 
102.3 0.9341 0.8995 
94.68 0.9593 0.9018 
15.62 1.218 0.9243 
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FIG. 7. Peclet-Nusselt groups for packed bed of glass ballotini showing trajectories. 

in terms of the dimensionless groups Peclet and 
Nusselt. On completing the parameter search on the 
heat capacity and the thermal conductivity for spheri- 
cal particles, their mean values were calculated from 
the Bayesian procedure (Gunn and Misbah [21]) and 
the parameter optimisation procedure was carried out 
for estimating Nusselt and Peclet groups. 

The experimental work on the glass spheres covered 
a range of Reynolds number from 2.7 to 263. Con- 
sistent results were obtained by following the Bayesian 
approach in the parameter estimation procedures as 
only estimates which were located in the indifference 
region were considered. Thus both the Peclet and 
Nusselt groups and their corresponding standard 
deviations were quantified. 

The calculated values of the Peclet and Nusselt 
groups were plotted against Reynolds number in Figs. 
(3) and (4) where they are compared with estimates 
from other work, Littman et al. [l], Littman and Sliva 
[2], Goss and Turner [15], Turner and Otten [16], 
GUM and de Souza [3], Gunn et al. [26] and Vort- 
meyer and Adam [27J. The solid curves plotted in 
these figures are the representation of the equations 
proposed by Gunn and Vortmeyer [28] and Gunn [4] 
for the calculation of Peclet and Nusselt groups. 

Gunn and Vortmeyer combined the effect of both 

conduction and convection in the calculation of the 
dispersion coefficient 

1 1 1 
Fe=pe, ‘Tier. 

Equation (10) represents the summation of a low 
Reynolds Number asymptote, I,/(1 Re Pr) and a high 
Reynolds Number asymptote l/Per. The value of I,/1 
depends upon the fluid and particle thermal con- 
ductivities only and values are given by Gunn and 
Vortmeyer. The group Per depends only upon particle 
Reynolds number for a given bed. For beds of spheres 
Per may be expressed (Gunn [6]), 

Per = &, withp = 0.17+0.33exp(-24/Re). 

The low Reynolds number asymptote is based upon 
steady state measurements such as those of Vortmeyer 
and Adam [271 and earlier workers, and upon 
dynamic experiments at very low Reynolds number 
such as those of Gunn and de Souza [3]. The particle 
fluid heat transfer coefficient in the fluid-phase dis- 
persion model is not stimulated at steady state, while 
at low Reynolds number the transfer of heat from 
particle to fluid in dynamic response is so slow that 
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FIG. 8. Dependence of Peclet group on Reynolds number when parameter interaction has been accounted 
for. 

the response is affected only by the coefficient of axial 
dispersion. 

The high Reynolds number asymptote l/Per is 
mainly determined by measurements of muss dis- 
persion in beds of impermeable particles. 

Thus, although equation (10) has been used to 
describe experimental results from experiments simi- 
lar to those described in this paper, the substantial 
basis of equation (10) is founded upon different types 
of experiment. 

The equation presented by Gunn [4] for the pre- 
diction of the dependence of Nusselt group upon 
Reynolds number is 
Nu = (7-10e+5e2)(l+0.7 Re’.‘Pr”“) 

+(1.33-2.4e+l.2e2)Reo~‘Pr”‘. (11) 

Equation (11) is based upon a low Reynolds Num- 
ber asymptote of 4.0 found by analysis of two-dimen- 
sional heat transfer between fluid and enveloping sur- 
faces and a large Reynolds number asymptote that 
represents steady state measurements of heat transfer 
such as those of Denton [29] and many others. The 
models of this period did not include axial dispersion 
but since the effect of axial dispersion at high Reynolds 

number is small (Gunn and de Souza [3]) the cal- 
culations of heat transfer coefficient were not affected. 
Equation (11) also describes the experimental values 
of mass transfer coefficient by means of the analogy 
between heat and mass transfer. Equation (11) is 
therefore founded on experiments and theory that 
differ from experiments of the type described in this 
study. 

Figure 3 shows the dependence of the experimental 
Peclet groups reported by several workers upon the 
Reynolds groups ; it covers a range of Reynolds num- 
bers from 0.06 to 4600. The scatter in the Peclet group 
is clear for Reynolds numbers between 1.0 and 300: 
Although experiments at low Reynolds number are 
difficult because of the increased environmental vari- 
ability, the effect of the heat transfer becomes negligible 
at Reynolds number less than 1.0. At low Reynolds 
number (Gunn and de Souza [3]) thermal dispersion 
dominates and the effect of the fluid particle heat 
transfer may be neglected. Thus the scatter of the 
Peclet group at low Reynolds number is reduced. 

In the intermediate range of Reynolds number the 
scatter of the Nusselt and Peclet groups is significant. 
This scatter could be attributed to the type of dynamic 
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FIG. 9. Dependence of Nusselt group on Reynolds number when parameter interaction has been accounted 
for. 

Table 2. Nusselt and Peclet groups after interactions have 
been accounted for and their corresponding standard devia- 

tion 

Re NU Pe (% S.D.)NU (% S.D.)p, 

2.1 6.8 0.14 29.2 22.4 
5.2 7.3 0.15 24.8 16.2 

91.0 29.0 1.7 22.4 14.0 
134.7 20.0 1.40 17.19 4.8 
162.0 39.0 1.75 24.3 11.5 
240.0 22.0 1.65 23.3 13.3 
262.1 31.5 1.82 12.0 13.9 

experiments carried out, the method of parameter 
estimation (whether accurate estimates were obtained 
or not), the deviation which is inherent in each exper- 
iment (for example, the repacking of particles in the 
bed is accompanied by a standard deviation f lO- 
15%, Gunn and Pryce [30]) and finally parameter 
interaction. 

The standard errors of the Peclet group estimated 
from the posterior distribution are shown as vertical 
lines for the results of this investigation ; the standard 
errors were found to be almost completely due to the 
experiments since errors from the numerical analysis 
were found to be negligible. It is obvious from this 

figure, however, that there is a considerable additional 
component of variance about equation (10). This may 
be due to an interaction between Nusselt and Peclet 
groups that is not resolved in the parameter estimation 
procedure. 

The corresponding experimental results for the 
dependence of the Nusselt upon the Reynolds group 
are shown in Fig. 4. At low Reynolds number only 
those experimental results taken from analyses that 
have included the effect of axial dispersion have been 
considered. The scatter of the Nusselt group at low 
Reynolds number is expected since axial dispersion 
dominates. Estimates of parameter error are again 
included in vertical lines, and as for Fig. 4, there 
appears to be a considerable additional component of 
scatter about equation (11). The pattern of interaction 
between the two groups may be identified by plotting 
the experimental results of this investigation alone. 

Figure 5 shows the experimental estimates of the 
Peclet group, and Fig. 6 shows the estimates of the 
Nusselt group. 

For Reynolds numbers 2.7 and 5.2 the estimates 
of the Peclet group are significantly above equation 
(lo), but the corresponding estimates of the Nusselt 
groups lie significantly below equation (lo), while 
at Reynolds number of 91, 135, 162, 240 and 263, 
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Peclet groups significantly below equation (10) cor- 
responded to Nusselt numbers significantly above 
equation (11). These regions are identified as ellipses 
in Figs. 5 and 6. Indeed it appears that the Nusselt 
and Peclet groups are highly correlated. 

In the parameter estimation procedure different 
initial values of the Nusselt and Peclet groups were 
selected and subsequently different pairs of Nusselt 
and Peclet groups resulted. Table 1 lists the values of 
the Nusselt and Peclet groups obtained in the search 
procedure. 

It is clear that these different pairs possess variances 
that do not differ significantly ; the maximum varia- 
tion is of the order to 10%. The F ratio test showed 
that a difference of this magnitude is statistically not 
significant. 

Thus unique pairs of Peclet and Nusselt groups 
cannot be found because of parameter interaction. 
When a high Nusselt group is estimated a cor- 
responding low value of Peclet group would be 
obtained and if a low Nusselt group is estimated a 
high Peclet group is obtained. This adds a difficulty 
as single values cannot be selected. Therefore unique 
NWPe pairs are not obtained even though the pairs 
of values at each flow rate are all associated with 
similar values of variances. 

To resolve this interaction a Bayesian approach was 
adopted. This was done by combining the parameter 
values obtained from the experiments with the pre- 
vious values reported in the literature to achieve a Nu- 
Pe pair which satisfied all the information present and 
accounted for the interaction. The different sets of the 
Nusselt and Peclet pairs obtained from the parameter 
search were plotted in Fig. 7, where it may be seen 
that pairs of the two groups lie on individual tra- 
jectories for each experiment; and that the exper- 
imental variance on the trajectories is approximately 
constant. It has been established on the basis of 
a great many investigations of different types, that 
the dependence of Peclet and Nusselt groups upon 
Reynolds number may be reasonably predicted by 
equations (10) and (11). 

In the Bayesian interpretation equations (10) and 
(11) represent prior information. 

Both the experimental estimates and the prior infor- 
mation are illustrated in Fig. 7. If the trajectory of the 
Nusselt and Peclet groups obtained from the exper- 
iments is to be compatible with previous investigations 
both curves should intersect. The intersection is the 
point at which both the experimental analysis and 
prior information obtained from other investigations 
are satisfied-a Bayesian approach. 

The same behaviour was found for all flow rates 
examined in this series of experiments. The Nu-Pe 
trajectory for the seven flow rates examined are shown 
in Fig. 7, together with the confidence region obtained 
from the intersection of the trajectories. The full line 
on this figure corresponds to equations (10) and (11) 
and the confidence region for four flow rates has been 
indicated by the confidence limits for each parameter. 

The points which were obtained from the intersection 
of the Nu-Pe trajectories with the derived relation- 
ships are plotted against Reynolds numbers in Figs. 
8 and 9 ; for each point the standard error estimated 
for the posterior probability density is shown. From 
these figures it is clear that the Nu-Pe groups which 
were obtained from the joint confidence region are 
close to the values calculated from equations (10) and 
(1 l), both based upon the results of several other 
investigations. 

The individual estimates of the parameter values 
and their standard errors are shown in Fig. 8 for the 
Peclet group and in Fig. 9 for the Nusselt group as 
functions of Reynolds number. It may be observed 
that the greater proportions of points in each figure 
lie within a standard deviation of the respective cor- 
relating relationships, equations (10) and (11). It 
should be emphasised that although the correlations 
have been used to resolve the parameter interaction, 
the method adopted to resolve the interaction does 
not consider the experimental points to lie on the 
previously established correlations since the Reynolds 
group, the correlating parameter, is not directly ex- 
pressed in the resolution illustrated in Fig. 7. If the 
correlations are to describe the results of this inves- 
tigation it would be expected that some two thirds of 
the experimental points would lie within a standard 
deviation of the correlations. This is clearly so in both 
Figs. 8 and 9, and therefore the experimental estimates 
of Peclet and Nusselt groups both support, and are 
supported by, the respective correlations, equations 
(10) and (11). 

Therefore from Figs. 8 and 9, it is clear that the 
Bayesian approach adopted for the resolution of the 
interaction problem was successful in providing para- 
meter values, all of which were compatible with the 
previously derived correlations. 

Table 2 lists the values of the Nusselt and Peclet 
groups which lie in the joint confidence region with 
their standard deviations calculated from the four 
parameter optimisation search. 

The standard deviations shown agree with the 
qualitative conclusions from other work and support 
the Bayesian nature of the search procedure when the 
number of parameters was four or more. 

The effectiveness of the Bayesian method described 
here may be gauged from a comparison of Fig. 3, a 
general collection of the results of this investigation 
without allowance for parameter interaction and of 
the experimental results of earlier investigations for 
the Peclet group, with Fig. 8. The departure of the 
experimental results of this investigation from the cor- 
relation of equation (10) has been greatly reduced. 
Since dynamic experiments of the type described here 
have been used by earlier workers such as Gunn and 
Narayanan [31], Littman and Sliva [2] and Turner 
and Otten [16], it would be expected that the difficulty 
of parameter interaction between the Nusselt and 
Peclet groups would also contribute to a scattering of 
results. 
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A comparison of the corresponding Figs. 4 and 9 
for the dependence of Nusselt number upon Reynolds 
group gives exactly the same conclusions for the Nus- 
selt group and the correlating equation (11). 

The analysis suggests that the scatter in the exper- 
imental results of earlier workers is mainly due to 
parameter interaction between the Nusselt and Peclet 
groups in the analysis of dynamic, and perhaps some- 
times, steady state response. Thus, unless allowance 
is made for the interaction by a method such as 
described in this paper, the experimental results will 
exhibit a scatter that does not reflect the quality of the 
experiment, just the interaction. 

The second benefit of the Bayesian analysis is the 
estimate of the parameter error for both the Nusselt 
and Peclet groups found by this calculation of a pos- 
terior probability density for the parameter from a 
prior probability density. In contrast to the hnearised 
variancecovariance analysis the parameter accu- 
racies estimated in this way agree well with exper- 
imental and other evidence for the accuracy of these 
two parameters. As the parameter error can be 
obtained by a well-defined procedure found to be 
reliable in this paper, it is possible that the method 
may be extended to the analysis of other situations in 
heat and mass transfer. 
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